
Journal of Computational Physics163,133–149 (2000)

doi:10.1006/jcph.2000.6560, available online at http://www.idealibrary.com on

An Algorithm for Aligning a Quadrilateral Grid
with Internal Boundaries

James M. Hyman,∗ Shengtai Li,∗,† Patrick Knupp,‡ and Mikhail Shashkov∗
∗Theoretical Division, Mail Stop B284, Los Alamos National Laboratory, Los Alamos, New Mexico 87545;

†Department of Computer Science, University of California, Santa Barbara, Santa Barbara,
California 93106; and‡Parallel Computing Sciences Department, Mail Stop 0441,

Sandia National Laboratory, Albuquerque, New Mexico 87185-0441

Received September 24, 1999; revised June 2, 2000

We present a new numerical algorithm that aligns a quadrilateral grid with internal
alignment curves (IACs). These IACs can be used to delineate internal interfaces,
discontinuities in material properties, internal boundaries, or major features of a flow
field. The adaptive IAC grid generation algorithm readjusts a predefined reference
grid to create a nearby grid where the mesh cell edges are aligned with the IACs.
On an aligned grid, numerical discretizations of partial differential equations can
be formulated to satisfy the interfacial relations, such as matching fluxes across
the discontinuity, to reduce the numerical errors introduced by the discontinuity.
We present examples to demonstrate the effectiveness of the IAC grid generation
algorithm for multiple embedded interfaces in a quadrilateral grid.c© 2000 Academic Press

1. INTRODUCTION

In numerical approximations of physical systems with discontinuous coefficients, often
the largest numerical errors are introduced in a neighborhood of the discontinuities. These
errors are often greatly reduced if the grid is aligned with the discontinuities and special
formulas are used to incorporate the jump conditions directly into the numerical model,
for example, in solving the equations governing the conservation of mass, momentum, and
energy in multimaterial or multiphase flows, such as a liquid–gas or liquid–solid interface
where the normal and tangential stresses must be matched at the interface or the equations of
state are drastically different at an interface. When the strain and stress of materials are being
modeled and the coefficients are discontinuous, the numerical solution is often extremely
sensitive to the proper alignment of the control volume with the boundary. In numerical
approximations of wave equations, discontinuities (e.g., the tensorial dielectric constants
in Maxwell’s equations or the tensorial stiffness tensors in general plasticity models) can
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introduce spurious errros and reflections at an interface boundary unless the boundary is
aligned with the discontinuity [11].

The rate and direction of underground flows predicting the extent of contamination and
the danger to the environment posed by subsurface flows from hazardous waste sites are
governed by discontinuities in the geomorphology of the flow field. Finite difference ap-
proximations are more accurate when the underlying grid is aligned with the discontinuities
to minimize the heterogeneity within a grid cell.

Although grid generation [15, 21] is the heart of most numerical algorithms for hetero-
geneous regions, little attention has been given to automated alignment with the internal
boundaries. With the exception of a few recent papers [5, 8], most of the proposed methods
have been devised to locally align a grid with interfaces and sharp gradients in the solution
[1, 6, 7, 12–14, 17, 19, 22, 24] or to explicitly treat discontinuities as an immersed interface
in a grid and locally adjust the difference methods to accurately account for any discontinu-
ities [9, 23]. The General Elastic Grid Adjustment (GEGA) [6], directional control [1, 7],
and Jacobian-weighted [13, 14] methods can generate smooth but only qualitatively aligned
grids. The Geostatistical Adaptive Grid (GAG) [19] alignment algorithm can generate an
aligned grid, but it can be extremely rough and irregular. Because the accuracy of finite
difference approximations is related to the smoothness of the grid, it is essential to generate
an aligned grid which is smooth.

We describe a new approach where after the discontinuities with internal alignment curves
(IACs) are delineated and a boundary fitted quadrilateral reference grid is generated, this
reference grid is rearranged so the grid cell edges are locally aligned with the IACs. The
IACs can be defined to delineate internal interfaces, discontinuities in material properties,
internal boundaries, or major features of a flow field. The new grid then captures these
discontinuities and will allow numerical discretizations of PDEs to directly incorporate
the interfacial relations, such as matching fluxes across the discontinuity, at the grid cell
edges and reduce the numerical errors introduced by the discontinuity. The IAC algorithm
is motivated by the observation that in many applications with internal discontinuities, the
computation domain can be split into several homogeneous smaller domains by the IACs.

Multiblock grid generation methods split the physical domain into separate pieces, gener-
ate a separate grid for each piece, and have the separate grids communicate with each other
through the interfacial boundary conditions. The multiblock grid generation algorithms for
block structured meshes can create meshes whose boundaries align with discontinuities
similar to the examples we show for the IAC applied to a single mesh [3, 4]. A major
difference, however, is that the IAC algorithm aligns the internal grid lines ofsingle, log-
ically rectangular grid with discontinuity. Thus, the flexibility and complexity of multiple
blocks are traded for the convenience of a single block. There are advantages to having a
single quadrilateral grid that embeds the discontinuities as generated by the IAC versus the
flexibility (but added complexity) of having several component grids, each with its own
data structure. For complex problems, probably the ideal grid would be a combination of
the two approaches.

A significant difference between the IAC and block-structured alignment algorithms is
that the IAC grid is aligned withinternal interfaces so that material property discontinu-
ities in the medium are captured by the grid. Most multiblock algorithms align theexter-
nal boundaries of the mesh blocks with the interfaces. Because of these differences, the
general-purpose multiblock algorithms are appropriate for flow problems where the grid is
aligned with external physical boundaries such as multiple airfoils. Also, often viscous-flow
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calculations have stringent grid quality requirements in boundary-layer regions near external
boundaries that are easily accounted for by multiblock methods.

The IAC algorithms are designed for multiphase, subsurface flow in porous media con-
taining material discontinuities in the conductivity field or for applications of Maxwell’s
equations with discontinuities in the dielectric properties of the medium. In these problems
there are usually no boundary layers near the internal interfaces. The IAC algorithm will not
automatically refine the mesh near an IAC; however, by aligning the grid with discontinu-
ities, the numerical method is more likely than a nonaligned grid to capture the behavior of
the flow field. When a refined grid is desired near an IAC, this can usually be accomplished
by an appropriate initialization of the iterative IAC algorithm.

After describing the IAC algorithm for the simplest case of aligning the grid with IACs
that span between opposite sides of the domain boundaries, we describe the more difficult
IAC algorithm needed to align the grid with the embedded quadrilaterals. We then combine
the two algorithms to illustrate the robustness of the approach over a wide range of examples
with internal discontinuities. We also include an electromagnetic calculation, where the IAC
algorithm is used to align the grid with a discontinuity in the dielectric constant.

2. GRID ALIGNMENT FOR SPANNED IACs

In describing the algorithm, it is useful to classify the type of IACs according to whether or
not the IAC describes a region enclosed within the domain. In this section, we will describe
the algorithm for when the discontinuities can be delineated by aspanned IAC(SIAC) that
connects opposite sides of the domain boundaries. These IACs are appropriate in layered
domains when flows in underground flow fields are approximated or the dynamics of layered
materials or the interface dynamics between two fluids are modeled. Note that although a
discontinuity may not stretch across the entire domain, it can be delineated by a spanned
IAC by extending the IAC from the discontinuity to the boundaries. In our algorithm, we
approximate a SIAC by a sequence of (possibly curved) line segments.

In the example shown in Fig. 1a, there are two horizontal SIACs (H0 and H1) and one
vertical SIAC (V0). These consist of a sequence of linked line segments (e.g.,H1 has line
segments connecting the pointsH10, H11, H12, andH13). Note that the line segments need
not be a straight line; the segment betweenH11 andH12 is the arc of a circle. We assume that
horizontal (vertical) SIACs do not cross other horizontal (vertical) SIACs. If a line segment
is shared by both a horizontal SIAC and a vertical SIAC, it can easily be transformed to
a case where it is not by adding more line segments. Therefore, for simplicity, we require
that none of the line segments be shared by both horizontal and vertical SIACs.

In addition to the IACs, the algorithm requires an initial (not necessarily aligned) boundary
fitted grid as in Fig. 1b. The initial grid can be generated by any standard grid generation
algorithm based on, say, transfinite interpolation [21], an elliptic grid generator [15], or the
divide and conquer [2] algorithm.

The alignment process begins with the simple assignment of a single horizontal grid line
to each of the horizontal SIACs and a vertical grid line to each of the vertical SIACs. To
select the appropriate grid line to align with the SIAC, we will describe the process for a
horizontal SIAC. First, for each vertex of the SIAC, find the point of the non-aligned grid
that is closest to the vertex. Next take the average of the vertical indices of all of the closest
non-aligned points and round to define the vertical index of the horizontal grid line closest
to the SIAC. After this is done for each vertical and horizontal SIAC, the intersection points
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FIG. 1. (a) The goal is to align a grid with the two horizontal and one vertical SIACs in this square domain.
(b) The initial reference grid for the domain in (a) is a uniform 41× 41 point grid. (c) Moving the reference grid
points closest to the SIACs to lie on the SIAC generates a possibly overlapping grid. (d) After the locations of the
grid points are smoothed redistributed, and the points along the SIACs and the domain boundary the aligned grid
accurately tracks the IACs.

between two SIACs have unique grid indices (logical coordinates) in each direction. The
locations of the grid points between any two SIAC vertices are then uniformly distributed
(default) or distributed by the virtual function defined by the user. The original distribution
of the grid points can be preserved by computing the intersections between the SIAC and
grid lines and then redistributing them with inverse interpolation [10]. On a curvilinear grid
the redistribution is done in physical space instead of based on the grid index (logical space).
If a SIAC crosses both a sparse region (with the grid points far apart) and a dense region
(with the grid points close together), an alternative way to preserve the distribution of the
grid points is to split the SIAC into two segments, one in sparse region, one in dense region.

The assignment of the reference grid line to the SIAC may result in grid points crossing on
the domain boundaries and these points must be regularized to retain their relative positions.
Linear interpolation is usually sufficiently accurately define new grid locations along smooth
boundaries but it can introduce large errors near kink points or internal corners. A kink is
a specified point on an IAC or boundary where the slope of the curve is discontinuous
(e.g., pointH11 in Fig. 1a). We handle the kinks in the boundary by not restricting the grid
point movement during the redistribution and then moving the boundary point nearest to a
kink point to the kink’s location. This approach is also used in the divide and conquer grid
generation method [2].

We regularized the boundary grid points by first using the original distribution of the
original grid points on the boundary as a guide for the density of mesh points along a
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boundary line. We use inverse interpolation between the intersection points of the SIACs
with the boundaries to redefine the grid points on the boundary so that they match the
relative distribution of the original reference grid. The inverse interpolation is done in grid
index space by assuming the grid spacing between the original grid points is uniform. The
distribution and locations of the new grid points are defined by calculating the length of
each boundary segment and dividing it by the new number of intervals.

2.1. Grid Smoothing Algorithm

Redefining the grid points on the SIACs and domain boundaries can result in severe
distortions or tangling of the internal grid points (e.g., see Fig. 1c). We regularize the
positions of the internal points by first freezing the mesh points on all SIAC and domain
boundaries and then smoothing the positions of the remaining points by an iterative elliptic
smoothing grid generation method. In the examples presented here, we use Gauss–Seidel
iterations to solve the Thompson, Thames, and Mastin (TTM) smoothing equations [20].
The smoothing regularizes the distribution of the grid points, is guaranteed to converge,
and eliminates overlapping grid cells (see Fig. 1d). The Gauss–Seidel iterations are halted
when the residual of the TTM equations falls below a small tolerance.

Once a smooth grid has been generated by freezing some of the grid points, the points
on the domain boundaries are freed up and the smoothing grid generator is called again.
We use the inverse interpolation algorithm to set the relative spacing of the points on the
boundary to be the same as the relative spacing of the grid points along the first internal
line of grid points. We found this two-step process to be more robust than allowing the IAC
points to move on the domain boundary in the initial smoothing step. This is especially true
when the grid must be aligned with multiple IACs. For most problems, the boundary points
need to be smoothed only a few times.

3. GRID ALIGNMENT FOR QUADRILATERAL IACs

We first consider the case when the internal discontinuities can be delineated by the
boundary of a collection ofquadrilateral IACs(QIACs). In our implementation, the grid is
aligned sequentially with the perimeters of the QIACs and we assume that the alignment
with one quadrilateral has a small affect on the alignment with the others. Although the
QIACs can be adjacent to each other or nested within one another, they should not overlap.

To align a grid with internal quadrilaterals, it is possible to transform the problem into
alignment with SIACs by extending the edges of the quadrilaterals as horizontal and vertical
line segments to the domain boundaries. This approach succeeds for one or two quadrilat-
erals, but will usually produce a grid that is not as well structured as one produced by an
algorithm designed specifically for quadrilaterals. This is especially true when there are
large numbers of quadrilaterals or the boundaries of the quadrilaterals and the relations
between them, such as several quadrilaterals nested within each other, are extremely com-
plicated. For these situations, it is extremely difficult to automate a procedure that will
embed the QIACs into a SIAC problem.

3.1. Single QIAC

Consider the initial reference grid and the embedded quadrilateral shown in Fig. 2a. We
will use this example to illustrate the basic single QIAC algorithm.
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FIG. 2. (a) The initial QIAC is embedded in a uniform 11× 11 initial grid. (b) The domain is split into nine
subdomains by extending the vertices to the domain boundaries. (c) The reference grid points are defined for the
line segments on the QIAC, the lines connecting the vertices to the domain boundaries and along the domain
boundaries. (d) The initial grid points nearest the IACs are moved to the newly defined reference grid points.
(e) The grid is regularized by the two-step smoothing algorithm described in Section 2.1.

BASIC SINGLE QIAC ALGORITHM.

1. Identify the closest reference grid point for each vertex and assign logical (index)
coordinates for the vertices and the center of QIAC:
• Identify the grid point closest to each vertex of the quadrilateral and assign its logical

coordinates to the vertex. In Fig. 2a if the grid lines are numbered from 0 to 10, then the
grid index closest to the vertexV0 at (0.2, 0.6) is (2, 6),V1 is at (5, 2),V2 is at (8, 4), and
V3 is at (5, 8). Here we have ordered the four vertices in counterclockwise in the logical
(index) coordinate system.
• To determine a starting vertex of QIAC for the algorithm in a consistent manner, we

use an algorithm that identifies it as thelower leftcorner of the logical reference grid. The
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lower left vertex satisfies two conditions: (1) the horizontal logical coordinate of of lower
left corner must be smaller than the next vertex; (2) the average of the absolute values of the
logical slopes of the candidate edge starting at the lower left corner and the corresponding
opposite side of the QIAC must be less than that of the other two edges of the QIAC.

For this example,V0 andV1 satisfy the first condition. Starting atV0, the sum of absolute
value of the logical slopes betweenV0− V1 andV2− V3, is

(6− 2)/(5− 2)+ (8− 4)/(8− 5) = 8/3.

Starting atV1, the sum betweenV1− V2 andV0− V3 is

(4− 2)/(8− 5)+ (8− 6)/(5− 2) = 4/3.

Therefore, (because 4/3< 8/3) we use the second condition to selectV1 to be the lower
left corner in the logical coordinate space.
• Define reference points in the logical coordinate system.

—Define thelogical center of the quadrilateralas the average (truncated to an
integer) of the logical coordinates of the four vertices. For this example, the logical center
is at

Vc = (V1+ V2+ V3+ V0)/4= (5, 5).

—Define averagelogical lengthin thex andy directions of the logical coordinate
system as

l x = (V2− V1+ V3− V0)|x/2+ 1= (8− 5+ 5− 2)/2+ 1= 4,

l y = (V3− V2+ V0− V1)|y/2+ 1= (6− 2+ 8− 4)/2+ 1= 5.

—Define thelogical coordinatesfor the four vertices based on the logical coordinates
of the center and average length in each direction. The logical coordinates for the lower left
cornerV1 is

V1 = (Vc − (l x, l y)/2) = (3, 3).

The logical coordinates for other three vertices areV2 = (7, 3), V3 = (7, 7), V0 = (3, 7).
2. Split the domain into nine parts by connecting the four vertices with the domain

boundaries by moving the closest reference point to each vertex as shown in Fig. 2b. For
this example, the closest reference point of each vertex and vertex itself are at the same
location. For a general grid, this may not be true and some parts may degenerate into a
single grid line if one side of the QIAC is on the domain boundary.

3. Using inverse interpolation, compute the grid locations for the line segments on the
quadrilateral, along the lines connecting these segments to the domain boundaries and on
the domain boundaries as shown in Fig. 2c.
• First define the grid points on the lines connecting the vertices with the domain

boundaries. Note that to preserve the order of the grid points on a boundary, the locations of
the boundary points and the points nearest to the boundaries are not changed by the inverse
interpolation.
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• Using the inverse interpolation, define the grid positions on the domain boundary.
• Define the grid points between the vertices on the QIAC.

4. If the domain boundary has a kink point, move the reference grid point closest to the
kink point, as we did for aligning the grid with an SIAC. (Note, that there are no kink points
in the example shown in Fig. 2a). Because we modify the grid point locations only on the
four lines, where the edges of quadrilateral lie, and the domain boundaries, the grid we
generate after this step is very irregular (see Fig. 2d).

5. Using the same smoothing operator as for the SIAC, generate the aligned grid while
freezing the grid points on the QIAC and domain boundary. Then the points on the domain
boundaries are freed up and the smoothing grid generator is called again (see Fig. 2e).

To ensure that initially the different vertices have different logical coordinates, the ref-
erence grid should be sufficiently fine so the local minimum spacing for the reference grid
should be larger than the distance between any two vertices of the QIACs. Otherwise, two
vertices may have the same nearest reference point, which could lead to the singularity of
the quadrilateral. When this happens for a thin layer where two vertices are close, it can be
avoided by using a finer initial reference grid near the thin layer. To prevent multiple QIAC
vertices being assigned to the same reference grid point, we define the reference vertices
sequentially. That is, we bind the vertex that is closest to a reference point to that point and
eliminate it for consideration as a reference point for any other vertices. This approach is
robust and can create a locally fine grid near an IAC.

3.2. Multiple QIACs

When there are several quadrilaterals inside the domain, we recursively align the grid
with the quadrilaterals one at a time using the single QIAC algorithm. Before beginning the
alignment process, we analyze the QIACs to identify potential problems, such as overlapping
QIACs or QIACs with shared boundaries. We eliminate these problems by defining new
QIACs to be used during the alignment algorithm.

When a QIAC shares a boundary with its parent QIAC, we say the child-shared boundary
is contained in the boundary of the parent QIAC. When two QIACs are not nested but share
only part of a boundary, it is convenient to generate a new QIAC and to define three QIACs
where the shared boundary is now contained in the boundary of another quadrilateral. An
example is shown in Fig. 3a. If two QIACs intersect at a vertex, then we add another
quadrilateral which shares a boundary with both quadrilaterals (see Fig. 3b). At this time,
our algorithm does not support more than three quadrilaterals intersecting at a single point.

FIG. 3. (a) Two QIACs that initially share part of the boundary are transformed into three QIACs where the
shared boundary is now contained in the boundary of another quadrilateral. (b) Two QIACs that share a vertex are
transformed into three QIACs where the shared boundary is now contained in the boundary of another quadrilateral.
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FIG. 4. The multiple QIACs in the figure on the right are cataloged by the tree diagram on the left and the
grid the QIACs are considered in the order A-B-C-D-E-F-G.

We order the alignment process by defining a tree structure (as shown in Fig. 4) to catalog
the nesting of the QIACs with respect to each other. A QIAC with other QIACs inside is
defined as the parent and the included QIACs are its children and are linked below the parent
in the alignment tree. Two QIACs are siblings if they have the same immediate parent but
do not contain each other. We define the entire domain as the first parent at the top of the
alignment tree. The recursive alignment algorithm begins at the top of the tree and works
it way down. After the grid has been aligned with a QIAC, then the alignment algorithm
recursively aligns the grid for its children. After the grid has been aligned with all the
children of a QIAC, then it is aligned with the siblings of the QIAC.

The order in which the grid is aligned with the QIACs on the same level does affect the
final aligned grid. In practice the resulting grid is insensitive to the order that the grid is
aligned with the siblings on the same level. We do find that the algorithm is usually more
effective and requires fewer smoothing iterations if the grid is aligned with the sibling that
has the most boundaries in common with other QIACs first.

Once the alignment tree has been defined and the nextselectedQIAC to be aligned has
been chosen, the first step is to find thelargest isolated subdomainof a previously aligned
region that contains the selected QIAC (see Fig. 5). The boundary of the subdomain could
be the boundary of the whole domain, the boundary of the previous aligned quadrilaterals,
or previously aligned horizontal or vertical SIACs.

To minimize the effect of defining the grid in the subdomain, the subdomain is defined
to be as large as possible, but not to contain any previously aligned QIACs. To identify the
largest isolated subdomain, we start with the whole domain and shrink it step by step.

SINGLE QIAC ALIGNMENT ALGORITHM.

1. First we check if the quadrilateral is inside another previously aligned quadrilateral.
If so, then because we are refining from top to bottom of the parent–child alignment tree, if
a quadrilateral is nested inside another one, the larger one will have already been aligned.
If this is the case, then we shrink the subdomain to the boundaries of the parent aligned
quadrilateral.

2. Next if the current quadrilateral is not the child of a previously aligned QIAC, then
we check if it is between any SIACs. If so, then we shrink the subdomain by using these
IACs to define the new boundaries of the subdomain.

3. Finally, we check if there are previously aligned QIACs inside the current subdomain.
If so, then the subdomain is shrunk again until there are no other aligned QIACs in the
subdomain. The rectangular subdomain is shrunk until it is the largest isolated rectangular
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FIG. 5. If the grid has already been aligned with the QIACsA, B, C, andD, then to identify the largest isolated
subdomain for the QIACE that is as large as possible but does not contain other previously aligned QIACs. First,
since QIACA is a parent ofD, we take it as the initial subdomain forE in (a). Because this still contains the
previously aligned QIACB, this subdomain is shrunk to the one shown in (b). The subdomain is further reduced
in (c) and (d) to exclude the previously aligned QIACsC andD.

region containing the selected QIAC that does not intersect or contain a previously aligned
QIAC. This can be done by sweeping each boundary of the subdomain to exclude the previ-
ously aligned QIACs (see Fig. 5). Note that the boundary of the largest isolated subdomain
usually overlaps with the boundaries of previously aligned QIACs.

It may seem that the ideal subdomain for the selected QIAC would be one whose bound-
aries contain the boundaries of the selected QIAC. However, because the subdomain bound-
ary does not change during our alignment and smoothing, unless the selected QIAC is on
the external boundary of the domain or on a previously aligned IAC, this is usually a poor
choice for the alignment.

The grid is aligned for the selected QIAC by applying the single QIAC alignment algo-
rithm within the selected subdomain. Although for the single QIAC alignment algorithm
the distribution of points on the boundary of the whole domain is unrestricted, the boundary
of the selected subdomain may contain other previously aligned QIACs. If so, the logical in-
dices for the vertices of previously aligned QIACs should not be changed, although the points
can move along the subdomain boundary during the subdomain alignment. We allow this
movement by identifying the vertices of the previous aligned IACs on the subdomain bound-
ary and redistribute the points based on this information of these IACs and the selected QIAC.

When the boundary of the selected subdomain is a SIAC, then we have more freedom in
defining the number of grid points along the IAC. If the boundary of the subdomain contains
vertices of an SIAC, these points are treated as kink points.
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Finally, when the vertex for the selected QIAC is also a vertex of a previously aligned
QIAC, then the logical indices for this vertex have been assigned and cannot be changed.

MULTIPLE QIAC ALIGNMENT ALGORITHM.

1. Preprocess the QIACs to eliminate overlapping QIACs and shared boundaries.
2. Define the parent–child alignment tree to catalog how the QIACs are nested within

each other.
3. Define an order for the alignment process by sweeping the alignment tree from top

to bottom. The grids on the same level (siblings) are ordered so the ones with the most
boundaries in common with the parent QIAC are done first.

4. Recursively align the grids with the QIACs using the single QIAC algorithm applied
to the QIAC subdomain.

a. Define the selected QIAC as the next one in the order queue.
b. Define the subdomain that contains only the current QIAC.
c. Align the grid with the selected QIAC within the subdomain.
d. Smooth the grid for the selected QIAC within the subdomain.
e. If there are other QIACs to align, go to step a.

5. Apply the TTM smoothing to the entire grid.

When the boundaries of a QIAC are not straight lines, the position of the grid points on
a curved boundary must be computed according to the shape of the edge.

When the grid is to be aligned with both SIACs and QIACs, we could first transform
the line segments into the boundaries of QIACs and then use the multiple QIAC algorithm
to align the grid. However, because the SIAC alignment algorithm is usually simpler, is
more efficient, and can produce a better structured grid than the QIAC algorithm, it is
advantageous to keep the SIACs and directly combine the two algorithms. We do this by
first aligning the grid with the SIACs. Next, if there are QIACs that cross SIACs, these
quadrilaterals are split so they do not cross an SIAC. We then apply the QIAC algorithm
while freezing the mesh points on the SIACs.

If the IACs are not quadrilaterals, they can usually be subdivided into quadrilaterals. We
represent triangles as quadrilaterals by defining the center of the longest edge of the triangle
to be a degenerate (180◦) vertex of a quadrilateral with the same perimeter. The user can
represent the IAC regions with more than four edges by dividing the region into quadrilat-
erals and triangles. Because the splitting may introduce additional internal boundaries that
are not IACs, we flag these artificially created internal boundaries so that the mesh points
are not required to stay on these during the smoothing iterations. This is accomplished by
setting a flag for each vertex on the internal boundaries to indicates if the point is on an IAC
or not.

4. IAC GRID ALIGNMENT EXAMPLES

To demonstrate the strengths and weaknesses of the IAC grid alignment algorithm, we
consider examples demonstrating the effectiveness of the algorithm for a problem with
multiply embedded regions, including circles and nested quadrilaterals. Next, we illustrate
how the ordering and subdividing of QIACs can result in very different aligned grids.
The examples all are initialized with a 41× 41 uniform grid, unless it is explicitly stated
otherwise.
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The computer software for these examples was developed by Shengtai Li and Patrick
Knupp and is available through the Web site http://engineering.ucsb.edu/˜shengtai. There
is also a graphics interface to display the grid during the refinement process and allow
for interactive steering of the alignment process. The original IAC alignment code was
written in Fortran but lacked the flexibility to accommodate multiple shaped internal
boundaries without extensive changes for each special case. The current C++ software
is far more flexible than the Fortran software in accommodating different-shaped bound-
aries. The virtual function in the C++ allows boundaries of different shapes to be com-
puted with the same routine as long as the boundaries are accessed through pointer or
reference.

4.1. Multiple Embedded SIAC and QIAC Examples

In the first example, we illustrate the flexibility of the IAC algorithm by including embed-
ded QIACs, QIACs with a shared edge, and an ellipse section. Note that the large QIAC-I
shown in Fig. 6a contains two smaller ones (II and III) and that QIAC IV shares an edge
with the large QIAC. Also, QIAC V is a circle that has been delineated by four circular arcs
connecting the vertices. The numbering of the QIACs is also the order in which the IAC
algorithm aligned the grid.

In all of the examples, the internal quadrilateral are defined by four vertices ordered in a
counterclockwise direction. This same order is used to flag whether the mesh points on the

FIG. 6. (a) Six QIACs, including a circle, two QIACs with a shared boundary and two nested QIACS, are
defined in a square domain. (b) The IAC aligned grid for the QIACs shown in (a). (c) Three SIACs and two QIACs
identify the interfaces to align the grid. The thin QIAC is approximately half the original grid spacing. (d) The
IAC aligned grid for (a) accurately tracks the interfaces and resolves the very thin QIAC.



ALGORITHM FOR ALIGNING A QUADRILATERAL GRID 145

internal boundaries are IACs or were artificially created by the algorithm when it divided
the region into SIACs and QIACs.

The aligned grid in Fig. 6b illustrates the effectiveness of the algorithm on this complex
example. Note that the initial uniform reference grid points along the boundary are now
nonuniform to better accommodate the IACs. These mesh points were allowed to slide along
the boundaries when the grid was aligned with the internal QIAC. That is, the boundaries
of the outside QIAC define a small domain for the inside QIAC. This holds also when we
align the grid with object IV. The inverse interpolation preserves the shape of the previous
QIACs, although the points on the QIAC boundary are redistributed. We also observed that
during the alignment algorithm, when the grid was aligned with QIAC V and VI, the number
of points on the boundary of QIAC I did not change. Although the default line is straight,
the boundaries of the objects and line segments can be defined by the user to be any shape.
This is done to define the ellipse as QIAC V.

In geophysical applications, it is common to have very thin layers that must be aligned
with the grid. Among the mixed SIACs and QIACs in Fig. 6c is a very thin QIAC layer. This
layer is below the thickness of our original reference grid, but the algorithm resolves the
potential conflict in assigning a single reference grid point to multiple QIAC vertex points.
The IAC grid shown in Fig. 6d. also illustrates how the circular arc in the SIAC results
in a kink point being created where the straight line segments and circular arc meet. The
kink point can be used by the user to indicate special points where a mesh point must be
placed. A list of the kink points defining their position must be supplied by the user before
the initial grid generation. This was done to define the kink in the upper horizontal SIAC.

4.2. Sensitivity of the Grid to the IAC Procedure

To investigate the sensitivity of the final aligned grid to the way in which the region is
subdivided, we consider the QIAC shown in Fig. 7a. If we follow the procedures described
in Section 3.1, the resulting grid is almost a square grid embedded in the slanted rectangle
shown in Fig. 7b. Note that the density of grid points inside the QIAC is less than elsewhere
in the domain.

We next divided the QIAC into two triangles and one slanted rectangle, as shown in
Fig. 7c. We described the triangles as degenerate QIACs with a vertex in the middle of the
long edge. We set the flag not to freeze the grid points along these long edges in the final
grid smoothing step. That is, the grid points will stay aligned with the original QIAC, but
not the internal ones. However, because the intermediate steps require more grid points to
align the grid with the triangle, more grid points are “trapped” inside the original QIAC.
This results in far more internal grid points in the final aligned grid, Fig. 7d.

4.3. IACs in Nonrectangular Domains

Consider the three rectangular QIACs inside a shell domain shown in Fig. 8a. As described
in Section 3, the current implementation of our algorithm requires that the left or the right
QIAC must be aligned first. Note that the sequential nature of the algorithm broke the
symmetry of the grid shown in Fig. 8b. Because we align the grid with the left QIAC before
the right one, the grid is more regular on the left side of the domain. Other orderings of the
QIACs will alter the symmetry. If a symmetric grid is desired for a symmetric problem,
then the symmetry should be removed from the IAC process by solving, in this case, for
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FIG. 7. (a) A diagonal QIAC is embedded in a square domain. (b) The IAC aligned grid inside the QIAC
for (a) is coarser than elsewhere in the grid. (c) The original QIAC in (a) is split into two triangular QIACs and
on diagonal QIAC in an attempt to confuse the IAC algorithm. (d) The internal boundaries for the new QIACs in
(c) are not treated as IACs in the smoothing iteration. Note that the resulting mesh is much finer in the QIAC than
in (b).

half the domain and then reflecting the grid about the symmetry line to generate the full
symmetric aligned grid.

Figures 8c and 8d illustrate the IAC grid for two line segments (a SIAC) and a square
QIAC inside a quarter disk domain. As in the first example, the kink point in the SIAC must
be explicitly accounted for when aligning the QIAC.

The “C” grid in Figs. 8e and 8f is defined to have a kink point at the tip of the triangle on
the domain boundary. This example also provided a good test for the effectiveness of the
inverse interpolation routine to freeze the fixed point at the kink point in the middle of the
boundary.

5. ELECTROMAGNETIC EXAMPLE ON AN ALIGNED GRID

To illustrate the effectiveness of the aligned grid, we solve an electromagnetic problem
that has been previously used to compare numerical methods for Maxwell’s equations
[16, 18]. We use the mimetic discretization of Maxwell’s equations described in [11].

Consider the two-dimensional propagation of a plane electromagnetic wave across a
cylindrical material interface [16, p. 297]. In this problem a finite amplitude wave propa-
gating within free space (with dielectric constantε0 = 8.85× 10−12 F/m2 and permeability
µ0 = 1.25666× 10−6 N/A2) is launched at the cylinder (ε = ε0/16, µ = µ0). The wave
is transmitted through the cylinder, emerging at the opposite end after undergoing internal
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FIG. 8. (a) Two diamond-oriented QIACs are input symmetrically in a shell shaped domain. (b) The sequential
nature of the IAC grid algorithm does not preserve the symmetry of the QIACs in (a). To preserve the symmetry,
the grid should be generated for half the domain and then reflected about the line of symmetry. (c) A QIAC is
embedded in a disk shaped domain. (d) The IAC grid for the QIACs in (c) creates an almost perfect square grid
for the embedded rectangle. (e) The initial domain wraps around a triangular point and has an embedded QIAC.
(f) The IAC aligned “C” for (e) preserves the symmetry of the domain since there is only a single QIAC.

reflections within the cylindrical material. The computational domain of interest, shown in
Fig. 9a, consists of a semi-circular section with radius 0.25 embedded within a larger rect-
angular region. The boundary of the cylinder is a material interface and we apply the IAC
algorithm to construct a logically rectangular grid aligned with the interface (Fig. 9b). The
left side of the IAC grid is almost rectangular and is appropriate to capture the plane wave
propagating in from the left boundary. The electric field vectors at the time 4 ns (Fig. 9c) can
be compared with the finite element calculations on page 302 of Ref. [16]. The unstructured
grid used in Ref. [16, p. 298] also fits the interface, but is more distorted and non-uniform.
Visual comparison of our results with those presented in [16] verifies that the electric vector
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FIG. 9. (a) A plane wave enters from the left boundary of a rectangular domain with an embedded cylinder.
(b) The IAC grid is aligned with the external boundary. (c) The electric field att = 4 ns. is smooth and free from
distortions created by the grid.

field is smoother and freer from distortion due to the computational grid. An additional
benefit of this approach is that the numerical solution method on the logically rectangular
grid is less complex than the method on the unstructured grid.

6. DISCUSSION

We have described a new numerical algorithm that aligns an initial non-aligned quadrilat-
eral grid with internal curves delineating internal interfaces in a computational domain. We
demonstrated the robustness and versatility of the IAC grid alignment for internal bound-
aries in a series of numerical examples. We are investigating generalizing the IAC algorithm
to three dimensions. Just as the problem of generating a 2D grid was reduced to that of
generating a single-grid curve in the plane, so the problem of generating a 3D grid may be
reduced to the problem of generating a surface in space.
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